TN 15 How Concentric Coupons Work

A measured potential is the sum of the voltage drops occurring in the measurement circuit and those occurring in the electrolyte.  Most of the individual measurement circuit voltage drops are negligible except for the one at the structure electrolyte interface which is the potential of interest.  Other components of the measurement circuit voltage drop are discussed further in EDI Technical Note TN8 Measurement Circuit IR Drop.

Voltage drops occurring in the electrolyte represent an error in the measurement.  These voltage drops are due to external current flowing through the electrolyte.  The current can be the structure’s own CP current as well as telluric currents, foreign structure CP systems or mass transit systems.  Eliminating the voltage drop error from the structure’s own CP system can be done by interrupting that current.  Other stray currents are not easily interrupted so different methods are used to eliminate their error.

The most common method is CP coupons which are small pieces of metal electrically bonded to the structure so they come to the same potential as the structure.  They are placed within a few centimeters of a reference electrode.  When the coupon potential is measured, the short distance between the reference and the coupon reduces, but does not eliminate, the voltage drop error in the measurement.  In a concentric CP coupon, the sensing port is located in the center of the coupon which reduces the electrolyte path to about a millimeter.  This extremely short distance virtually eliminates electrolyte voltage drop error.

TN 8 Measurement Circuit IR Drop

The components used for making potential measurements and the equivalent electrical schematic are shown below.  A reference electrode located close to the structure is connected to the meter by a test lead.  A second lead wire connects the structure to the meter.  In this simple DC circuit, the driving voltage is the potential that exists between the reference electrode and the structure.  When a measurement is being made, current will flow through the circuit as a result of this potential. The magnitude of the current flow follows Ohm’s law, I = E/R.  The current is proportional to the driving voltage and inversely proportional to the sum of all resistances in the circuit.  For example, if the circuit potential is one volt and the sum of the resistances is ten mega-ohms (MW), a tenth of a micro-amp will flow through the measurement circuit.

Voltage drops occur across each of the resistive elements in the measurement circuit.  These voltage drops are separate and distinct from the more commonly discussed voltage drops, or IR drops, which are due to external current flowing through the electrolyte.  In the figures, the external current is shown as ie.  Both measurement circuit voltage drops and external voltage drops become incorporated into potential measurements causing errors.  Different methods must be employed to minimize errors caused by each type.  Download our paper  Effect of Measurement and Instrumentation Errors on Potential Readings from the Technical section of our website to learn more.