TN 19 Junction Potentials

Junction potentials are a common error source encountered when making potential measurements in or through concrete.  Current is carried through an electrolyte by means of ions which physically move through the electrolyte.  In a potential field, anions move in one direction and cations in the opposite direction.  If the mobilities of the ions are unequal, a balancing potential builds up due to separation of the charges.  This potential, termed a junction potential, becomes incorporated into the measurement as an error.  In concrete, it is quite common to have areas of different electrolyte compositions.  For example, sodium chloride (NaCl) is often spread on the surface for deicing; sodium and chloride ions have very different ionic mobilities.  Another example is carbonation of concrete, the reaction of the material with atmospheric carbon dioxide, which proceeds inward from an exposed surface and causes a change in both the chemical composition and pH of concrete.  Each of these can contribute to a junction potential error in concrete measurements.

A junction potential can also form within a silver-silver chloride reference electrode if sodium chloride is used for the filling solution.  The different ionic mobilities will cause the potential to build up across the membrane or frit separating the filling solution from the external environment.   Potassium chloride should be used for the filling solution for silver-silver chloride reference electrodes since the mobility of potassium and chloride ions is similar thus minimizing any junction potential across the membrane.

If you find these technical notes interesting, please share them with your colleagues. Encourage them to periodically visit our blog for new, and hopefully useful, technical notes.

TN 18 How Fast is Instant Off

The instant off method of removing external IR drop in potential measurements involves interrupting the cathodic protection current.  This action produces an instantaneous voltage drop which is considered to be the external IR drop.  The potential measured immediately after this instantaneous drop is considered to be the “IR drop free” potential of the structure.  Clearly, this method only works with an impressed current cathodic protection system where all the rectifiers on that system can be interrupted simultaneously and there are no other sources of current flowing through the electrolyte.

An issue which should be considered when using current interruption for instant-off measurements is:   What is meant by instantaneous?  The answer is not simple since it depends upon the structure, the electrolyte and the method of interrupting the current.  Putting the answer in electrical terms, it depends upon the capacitance and the inductance of the circuit.  IR drop free measurements can be made microseconds after current interruption on small uncoated specimens in a low resistance electrolyte.  Large coated structures, such as pipelines, or high resistance electrolytes, such as concrete, usually require several hundred milliseconds or more for IR-drop free measurements.  Interrupting current on the AC side rather than on the DC side of the rectifier will increase the time delay because the circuit inductance is higher.

For situations where current interruption cannot be reliably used to minimize external IR drop error in potential measurements, cathodic protection coupons are frequently used.  These are small pieces of metal similar to the structure which are electrically bonded to the structure through a switch.  Measurements are made as above except that the coupon rather than the rectifier is momentarily disconnected.  These measurements are termed instant disconnect measurements in order to distinguish them from instant off current interruption measurements.

If you find these technical notes interesting, please share them with your colleagues. Encourage them to periodically visit our blog for new, and hopefully useful, technical notes.